→ OrganicN

N Loss

soi

۶N₂

Dominant factor of the N loss through denitrification in rhizosphere of submerged rice

Kakuda Ken-ichi, Kawakami Takahiro and Ando Ho Faculty of Agriculture, Yamagata University

Introduction

Rice roots have the unusual feature of transporting atmospheric O_2 through the stem to the roots, and subsequently use this oxygen to oxidize various ions in the rhizosphere. In a previous study (Kakuda et al. 2000), we observed little N loss from the rhizosphere as a result of denitrification during the middle growth stages of rice. Plant N uptake would play an important role in reducing N loss in the rhizosphere of submerged rice.

Hypothesis

11

Absorption of NO_3 -N produced in the vicinity of the roots would reduce N losses through denitrification in the rhizosphere at the panicle formation stage.

Materials and Methods

- A pot (4 L) experiment with five replications
- Rice cultivar: Haenuki

 Soil: Taken from the plow layer of a paddy soil at the Yamagata University farm in Japan

NH₄-N

NO₃-N

- Top-dressing: A mixed solution of $^{\rm 15}\rm{N}\mathchar`-labeled~(NH_4)_2SO_4$ and \rm{KNO}_3

OrganicN

20cm	Treatments			
		NO3-N	$NH_4 - N$	
		mgN• pot ⁻¹		
	Oni	0	40	
	15ni	6	34	
The N solution (40mg-N· pot-1) was	30ni	12	28	
injected by syrings at 4 positions in the	45ni	18	22	
injected by syringe at 4 positions in the	60ni	24	16	
soil at panicle formation stage.	<u>100ni</u>	40	0	

Results Nitrogen balance for rice pot experiments applied NH₄-N and NO₃-N

5				0	
Treatments	Absorbed N	Immobilized N	Exchangable	N Recovered N	N lost
			mgN•pot ⁻¹		
0ni	36.4(91)	4.0(10)	N.D	40.4(101)	-0.4 No. Io
15ni	37.1 (93)	4.2(11)	N.D	41.3(103)	-1.3 No Ic
30ni	30.8(77)	8.5(21)	N.D	39.3(98)	.0,7
45ni	31.0(78)	6.4(16)	N.D	37.5(94)	2.6
60ni	31.0(78)	7.5(19)	N.D	38.4(96)	1.6
100ni	23.1(58)	10.0(25)	0.1	33.2(83)	7.8

Numbers in parentheses represent the percentage of fertilizer-N recovery.

Conclusion

- Absorption of $\rm NO_3-N$ by the plants significantly reduced N loss through denitrification at the panicle formation stage.

• Assuming that nitrification occurs in the rhizosphere of the ONi treatment, the rate of N nitrified may be no more than 30% of the applied N.

• The physiological traits of the roots are a dominant factor in N loss from the rhizosphere.